Vertex and edge Co-PI indices of bridge graphs
نویسندگان
چکیده
منابع مشابه
On edge Co-PI indices
In this paper, at first we mention to some results related to PI and vertex Co-PI indices and then we introduce the edge versions of Co-PI indices. Then, we obtain some properties about these new indices.
متن کاملVertex and edge PI indices of Cartesian product graphs
The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product...
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کاملon edge co-pi indices
in this paper, at first we mention to some results related to pi and vertex co-pi indices and then we introduce the edge versions of co-pi indices. then, we obtain some properties about these new indices.
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Mathematical Sciences
سال: 2016
ISSN: 2307-454X
DOI: 10.14419/ijams.v6i1.8398